首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6765篇
  免费   1140篇
  国内免费   706篇
化学   4518篇
晶体学   70篇
力学   404篇
综合类   41篇
数学   640篇
物理学   2938篇
  2023年   146篇
  2022年   114篇
  2021年   152篇
  2020年   258篇
  2019年   217篇
  2018年   204篇
  2017年   185篇
  2016年   288篇
  2015年   285篇
  2014年   353篇
  2013年   496篇
  2012年   535篇
  2011年   590篇
  2010年   396篇
  2009年   404篇
  2008年   426篇
  2007年   363篇
  2006年   355篇
  2005年   330篇
  2004年   274篇
  2003年   200篇
  2002年   212篇
  2001年   167篇
  2000年   167篇
  1999年   172篇
  1998年   123篇
  1997年   124篇
  1996年   150篇
  1995年   107篇
  1994年   113篇
  1993年   108篇
  1992年   99篇
  1991年   82篇
  1990年   62篇
  1989年   74篇
  1988年   52篇
  1987年   46篇
  1986年   38篇
  1985年   34篇
  1984年   19篇
  1983年   18篇
  1982年   14篇
  1981年   13篇
  1980年   9篇
  1979年   6篇
  1976年   4篇
  1974年   3篇
  1973年   3篇
  1970年   3篇
  1957年   3篇
排序方式: 共有8611条查询结果,搜索用时 15 毫秒
81.
In this research, the graphene with excellent dispersity is prepared successfully by introducing gold nanoparticle to separate the individual sheets. Various techniques are adopted to characterize the prepared graphene and graphene-gold nanoparticle composite materials. This fabricated new composite material is used as the support material to construct a novel tyrosinase based biosensor for detection of bisphenol A (BPA). The electrochemical performances of the proposed new enzyme biosensor were investigated by differential pulse voltammetry (DPV) method. The proposed biosensor exhibited excellent performance for BPA determination with a wide linear range (2.5 × 10−3–3.0 μM), a highly reproducible response (RSD of 2.7%), low interferences and long-term stability. And more importantly, the calculated detection limit of the proposed biosensor was as low as 1 nM. Compared with other detection methods, this graphene-gold nanoparticle composite based tyrosinase biosensor is proved to be a promising and reliable tool for rapid detection of BPA for on-site analysis of emergency BPA related pollution affairs.  相似文献   
82.
Photosensitizers (PSs) combined with light are able to generate antimicrobial effects. Ru(II) complexes have been recognized as a novel class of PSs. In this study, we investigated the effectiveness of photodynamic inactivation (PDI) mediated by three Ru(II) polypyridine complexes, 1–3, against four isolates of clinical methicillin‐resistant Staphylococcus aureus (MRSA‐1, MRSA‐2, MRSA‐3 and MRSA‐4). In PDI of a planktonic culture of MRSA‐1, compound 3 showed the highest efficacy, likely owing to its advantageous light absorption, 1O2 quantum yield and bacterial cellular binding. The PDI efficacy of 3 was further evaluated against all other strains and MRSA‐1 biofilms. At appropriate PS concentrations, viability reduction of 100% or 96.83% was observed in planktonic or biofilm forms of MRSA, respectively. The mechanisms of action were investigated using negative staining transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). It was demonstrated that PDI of planktonic bacteria was achieved primarily through damage to the cell envelope. Biofilms were eliminated through both the destruction of their structure and inactivation of the individual bacterial cells. In conclusion, Ru(II) complexes, especially 3, are potential candidates for the effective photodynamic control of MRSA infections.  相似文献   
83.
Liu  Yang  Shi  Liang  Gong  Jin  Fang  Yu-Ting  Bao  Ning  Gu  Hai-Ying  Zeng  Jiang 《Mikrochimica acta》2015,182(15):2461-2468

Hemoglobin (Hb) has been demonstrated to endow electrochemical sensors with pH-switchable response because of the presence of carboxyl and amino groups. Hb was deposited in a chitosan matrix on a glassy carbon electrode (GCE) that was previously coated with clustered gold nanoparticles (Au-NPs) by electrodeposition. The switching behavior is active (“on”) to the negatively charged probe [Fe(CN)6 3−] at pH 4.0, but inactive (“off”) to the probe at pH 8.0. This switch is fully reversible by simply changing the pH value of the solution and can be applied for pH-controlled reversible electrochemical reduction of H2O2 catalyzed by Hb. The modified electrode was tested for its response to the different electroactive probes. The response to these species strongly depends on pH which was cycled between 4 and 8. The effect is also attributed to the presence of pH dependent charges on the surface of the electrode which resulted in either electrostatic attraction or repulsion of the electroactive probes. The presence of Hb, in turn, enhances the pH-controllable response, and the electrodeposited Au-NPs improve the capability of switching. This study reveals the potential of protein based pH-switchable materials and also provides a simple and effective strategy for fabrication of switchable chemical sensors as exemplified in a pH-controllable electrode for hydrogen peroxide.

A pH “on-off” switchable nanobiosensor was fabricated by casting a chitosan-hemoglobin biocomposite onto nano-gold electrode. This composite film exhibits not only excellent pH-responsive on (pH 4.0)-off (pH 8.0) behavior but also excellent pH-tunable on-off bioelectrocatalysis of H2O2.

  相似文献   
84.
85.
With the aim of obtaining high corrosion resistant Zn–Sn alloy coatings from an ionic liquid, the effects of electrodeposition potential and electrolyte composition on the electrodeposition behavior, film composition, morphology and corrosion performance were investigated. Cyclic voltammograms indicate that Zn and Sn were co‐deposited at distinct reduction potentials as pure Zn and Sn elements. In addition, the phase composition analysis also showed that the obtained Zn–Sn alloy deposits (8 wt.%–45 wt.% Zn) consist of a two‐phase mechanical mixture of small aggregates of Zn and Sn metals. The Zn content of the alloy significantly increases as the electrodeposition potential and electrolyte Zn (II)/Sn (II) ratio increase. The corrosion performance study of the obtained Zn–Sn coatings showed that they have a passivation behavior and their corrosion resistance increases as the alloy‐Sn content increases. To improve their morphological properties, ethylene diamine tetraacetic acid additive was introduced into the electrolyte and greatly improved the morphology and corrosion resistance of the deposits. For the first time, it was shown that high corrosion resistance Zn–Sn coatings can be obtained from ionic liquids. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
86.
87.
Endogenous carbohydrates in biosamples are frequently highlighted as the most differential metabolites in many metabolomics studies. A simple, fast, simultaneous quantitative method for 16 endogenous carbohydrates in plasma has been developed using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. In order to quantify 16 endogenous carbohydrates in plasma, various conditions, including columns, chromatographic conditions, mass spectrometry conditions, and plasma preparation methods, were investigated. Different conditions in this quantified analysis were performed and optimized. The reproducibility, precision, recovery, matrix effect, and stability of the method were verified. The results indicated that a methanol/acetonitrile (50:50, v/v) mixture could effectively and reproducibly precipitate rat plasma proteins. Cold organic solvents coupled with vortex for 1 min and incubated at –20°C for 20 min were the most optimal conditions for protein precipitation and extraction. The results, according to the linearity, recovery, precision, matrix effect, and stability, showed that the method was satisfactory in the quantification of endogenous carbohydrates in rat plasma. The quantified analysis of endogenous carbohydrates in rat plasma performed excellently in terms of sensitivity, high throughput, and simple sample preparation, which met the requirement of quantification in specific expanded metabolomic studies after the global metabolic profiling research.  相似文献   
88.
D4020 resin offered the best dynamic adsorption and desorption capacity for total flavonoids based on the research results from ten kinds of macroporous resin. A column packed with D4020 resin was used to optimize the separation of total flavonoids from Flaveria bidentis (L.) Kuntze extracts. The content of flavonoids in the product was increased from 4.3 to 30.1% with a recovery yield of 90%. After the treatment with gradient elution on D4020 resin, the contents of isorhamnetin 3‐sulfate and astragalin were increased from 0.49 to 8.70% with a recovery yield of 74.1% and 1.16 to 30.8%, with a recovery yield of 92.2%, respectively. Further purification was carried out by one‐run high‐speed countercurrent chromatography yielding 4.5 mg of isorhamnetin 3‐sulfate at a high purity of 96.48% and yielding 24.4 mg of astragalin at a high purity of over 98.46%.  相似文献   
89.
Vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with UV detection was applied to determine Isocarbophos, Parathion‐methyl, Triazophos, Phoxim and Chlorpyrifos‐methyl in water samples. 1‐Bromobutane was used as the extraction solvent, which has a higher density than water and low toxicity. Centrifugation and disperser solvent were not required in this microextraction procedure. The optimum extraction conditions for 15 mL water sample were: pH of the sample solution, 5; volume of the extraction solvent, 80 μL; vortex time, 2 min; salt addition, 0.5 g. Under the optimum conditions, enrichment factors ranging from 196 to 237 and limits of detection below 0.38 μg/L were obtained for the determination of target pesticides in water. Good linearities (r > 0.9992) were obtained within the range of 1–500 μg/L for all the compounds. The relative standard deviations were in the range of 1.62–2.86% and the recoveries of spiked samples ranged from 89.80 to 104.20%. The whole proposed methodology is simple, rapid, sensitive and environmentally friendly for determining traces of organophosphorus pesticides in the water samples.  相似文献   
90.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号